

BIOLOGY

9700/41 May/June 2016

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9700	41

Mark scheme abbreviations:

•	congratos	marking	nointe
,	separates	marking	points

I alternative answers for the same point

R reject

- A accept (for answers correctly cued by the question, or by extra guidance)
- **AW** alternative wording (where responses vary more than usual)
- <u>underline</u> actual word given must be used by candidate (grammatical variants accepted)
- **max** indicates the maximum number of marks that can be given
- ora or reverse argument
- **mp** marking point (with relevant number)
- ecf error carried forward
- I ignore
- **AVP** alternative valid point (examples given as guidance)

Page 3	Mark Scheme	Syllabus	Paper			
	Cambridge International AS/A Level – May/June 2016 9700					
1 (a)	both have <u>ribose</u> (sugars) ; R ribulose ATP has 1, ribose/pentose/sugar, NAD has 2 ; I <i>ref. to</i> additional hex both have, adenine/purine (base) ; I adenosine NAD has, nicotinamide/pyrimidine (base) ; ATP has 3 phosphates, NAD has 2 ;	ose	[max 3]			
(b)	accept synthesise/produce/convert to, for 'make' for all mp make (named), protein/polypeptide/peptides; A protein synthesis/tra make (named), disaccharide/oligosaccharide/polysaccharide/glycoge mammalian examples such as starch or cellulose make (named), triglycerides/lipids/phospholipids/steroids/cholesterol A glycogenesis make, nucleotide/polynucleotide/nucleic acid/DNA/RNA; A transcription/DNA replication AVP; e.g. named example of, polymerisation/condensation A phosphorylation example	nslation n ; R non- ;	[max 2]			
(c)	substrate-linked/substrate-level, phosphorylation ; I condensation reac	tion	[1]			
(d)	hydrogen, carrier/acceptor ; A gets reduced or gains H/H ⁺ <u>and</u> electro I donates R H ₂ /hydrogen molecules (acts as a) coenzyme ; A enables dehydrogenases to work <i>ref. to</i> glycolysis/respiration in anaerobic conditions ; A anaerobic resp I aerobic	ns iration	[max 2]			
(e)	 'more' needed once plus implied for second mp 1 more, C-H bonds/hydrogen(s) / reduced ; I C-C bonds R more hydrogen bonds R hydrocarbons accept produces/gives/results in for 'makes' in mp 2 and mp3 2 (makes) more reduced NAD ; 					
	3 makes more ATP per, gram/molecule/mole/unit mass;					
	 A releases/results in/gives, more energy per, g/etc. more, aerobic respiration/electron transport chain (ETC)/oxidative phosphorylation/chemiosmosis ; A higher rate of for 'more' 	9	[max 2] [Total: 10]			
2 (a)	at lowest value/in shortest supply ; I insufficient supply/not enough (the) one factor of several that affects rate ; A one factor of several pre increase in rate	vents	[2]			
(b)	to keep out unwanted CO ₂ (in air around leaves) ; A to stop CO ₂ increasing/entering (upper chamber) <i>ref. to</i> respiration of soil organisms ; A respiration of bacteria/fungi/sec <i>ref. to</i> respiration of plant roots ;	eds	[max 2]			

PMT

Page 4		Mark Scheme	Syllabus	Paper
		Cambridge International AS/A Level – May/June 2016	9700	41
(c)	(i)	I ref. to set B throughout I time references		
		 at low(er) light intensity / light intensity up to a figure in range 6 - 7 a <u>rate</u> increases as light intensity increases ; light intensity is (main) limiting factor ; mp1 and mp 2 need to be in correct context 	จน	
		 at high light intensity / light intensity above a figure in range 6 - 7 at <u>rate</u>, levels off/reaches plateau/remains constant; A rate unaffected (by light intensity) another (named) factor/not light intensity, is limiting; A CO₂ concentration/temperature 	и	[may 2]
	(ii)	more CO_2 available in B /less CO_2 in A ; A CO_2 concentration in B is double that of A <i>ref. to</i> fixation/Calvin cycle/light independent reactions; A description, e.g. CO_2 combines with RuBP <u>CO_2</u> concentration is limiting factor in set A ; A CO_2 concentration is limiting at a higher light intensity in B		[max 3] [max 2]
(d)	acc 1 2 3 4	 D, adapted to high CO₂/can use more CO₂ (per unit leaf area); A plants in D have, adjusted/accommodated, to high CO₂ D have more, chloroplasts/chlorophyll; D have more, rubisco/RuBP; D have more stomata; 		
	5 6	AVP ; e.g. <i>ref. to</i> <u>diffusion</u> of CO_2		[max 4]
				[1otal: 13]
3 (a)	(i)	<u>database(</u> s) ; computer (programs) / software ; analysis of, data / biological information / sequences ; A compare, genes / genomes		[max 2]
	(ii)	 identify/recognise, gene(s); A find where genes are predict, primary structure/amino acid sequences, of proteins; predict 3D structure of proteins; A tertiary identify/predict, functions of proteins (from 3D structure); <i>ref. to</i> drug to, bind with/block activity of/disrupt structure of, protein/enzyme; A drug specific to protein I denature, protein/ drug prevents, transcription/expression, (of gene); I gene edited 	/enzyme ing	[max 3]
(b)	(i)	cheaper ; A more economic(al) faster/can try many different drugs in a short period of time ; A time can try out changes to, model/drug structure, to see if more effective no need for, laboratories/equipment ; I uses less labour (initially) no need for tests on, animals/humans ; A fewer ethical iss	∍-saving /e ; sues	[max 3]

Page 5		5	Mark Scheme	Syllabus	Paper	
	-		Cambridge International AS/A Level – May/June 2016	9700	41	
		(ii)	functionality/to test that drug, actually works/is effective ; A cannot assume predictions are correct I efficiency safety ; A <i>ref. to</i> clinical trials/side effects dosage ; A theoretical modelling will not give information on doses		[max 2] [Total: 10]	
4	(a)	1 2 3 4 5 6 7	best/desirable, plants crossed ; A cross-pollinated R cross with othe (maize) species repeatedly/every generation ; detail of cross-pollination ; e.g. <i>ref. to</i> male tassels and female silks example of desirable characteristic ; A more kernels/big kernels/hig <i>ref. to</i> kernel colour/fast-growing/cold-tolerant hybridisation/two inbred (named) lines crossed/F1 hybrids formed A description, e.g. cross two, homozygous parents/parents from two bred lines gives more, vigorous/uniform, plants ; A heterosis <i>ref. to</i> dwarf maize/mutant alleles for gibberellin (synthesis) ;	er gh yield <i>\</i> ; o pure-	[max 4]	
	(b)	1 ma 2 3 4 5 6	<pre>discontinuous; x 2 for mp2–6 one gene/single locus/monogenic, inheritance; A monohybrid two alleles; dominant and recessive; 1:1 ratio purple to yellow; A 50% purple, 50% yellow test cross/Aa × aa;</pre>		[max 3]	
	(c)	(i) (ii)	 as, Bt crops/area, increases the number of resistant, pests/species increases; A the more (the area of) Bt crops grown, the more (resistant species figures quote; (2 years, area with units once) figures quote; (2 years, no. resistant pest species) mutation(s) (in pest species); chance/random/spontaneous (mutations); pests evolve resistance / natural selection for resistant pests; AVP; e.g. plateau in resistance, 2002–2005/2009–2011 first 6 years/1996–2001, no resistant species 	ecies, the)	[max 4]	
			environmental decreased insecticide use/few hazards to humans/Bt only targets p species ; A no/less pesticide used R herbicide	pest	[2] [Total: 13]	

Page 6		6	Mark Scheme	Syllabus	Paper
			Cambridge International AS/A Level – May/June 2016	9700	41
5	(a)	1 2 3 4 5	 mark-release-recapture/AW; A catch, mark, return, catch A mark-and-recapture escription (max 3) detail of trapping; e.g. Longworth/Sherman/live/small mammal detail of marking; e.g. felt tip pen/clipping fur/not to have adverse detail of timing of second trapping; e.g. not too soon or mixing wil not too long after as migration may occur/after 24 hours/1 day (at of days up to two weeks) detail of calculation; e.g. Lincoln Index / Petersen index or number marked time 1 × no. captured time 2 number of marked individuals recaptured time 2 A symbols in equation if key is given 	e effects I not occur/ ny number	[max 4]
	(b)	gl ce (n nc nc	ycogen ; entrioles/centrosomes ; nay have) cilia/flagella/microvilli ; o cell wall ; o, large/central/permanent, vacuole ; A no tonoplast		[max 2]
	(c)	(ii) (ii)	 1 reduce, other organisms' abundance/biodiversity; A endange species/water voles A causes extinction 2 alter food, chains/webs; 3 due to predation; 4 due to competition; 5 due to spreading disease; 6 may change habitat; e.g. create shade, change soil pH 7 may be toxic/threaten human health; 1 culling/hunting/trapping; contraceptive measures; 	er, rare	[max 3]
			l biological control disease agent ; I introduce new mink-eating prec	ator	[max 1]
					[Total: 10]
6	(a)	ke A no wi al	ey to 4 chosen symbols ; any two lettered pairs (e.g. E/e and A/a) identified I symbols for wing o eyes and black abdomen must be lower case (e, a) ith eyes and striped abdomen must be upper case (E, A) low ecf to max 3 if error in symbols	g length	
		pa ga F2	arents genotypes Eeaa × eeAa ; ametes Ea ea × eA ea ; A each gamete written twi 2 genotypes Eeaa eeaa EeAa eeAa ;	се	[4]
	(b)	cr A ch	ross with, homozygous recessive/black no-eyes, fly ; double recessive/aaee (or own symbols)/organism showing recess naracters or phenotype	ive	[1]

Page 7				Mark Sche	me		Syllabus	Paper
i age i		Camb	ridge Internat	ional AS/A	Level – May	/June 2016	9700	41
(c)	0	bserved	expected	0 – E	(O – E) ²	$\frac{(O-E)^2}{E}$		
	96			2	0	L		
	00		00	5	16	0.11		
	0/		03	4	10	0.19		
	81		83	_2	4	0.05		
	78		83	-5	25	0.30		
	332	2	332	;;	$\chi^2 = 0.65$	•		
	A fr	actions in	last column A	3 s.f. in last	column			[3]
	A data is a good fit/match A null hypothesis (no significant difference between O and E) R comment on significance of results R 'the value' is not significant probability (of this deviation) is over $0.05/\chi^2$ is less than 7.82 ; A χ^2 /results (of χ^2 test), less than value at probability 0.05 ref. to critical value ; ecf reverse arguments if answer from 6(c) is over 7.82 ref. to independent assortment/AW ; [mathematical content of the section of the sect						[max 2] [Total: 10]	
(a)	mai R ex	ntaining a xternal Ib	constant internotions	nal environm	ient ; AW			[1]
(b)	(i)	ribosome	s/rough endop	blasmic retic	ulum/RER;			[1]
	(ii)	exocytosi	s;					[1]
(1	iii)	causes gl adds trans A GL more gluc glucose c	ucose uptake/ sport proteins UT(4), protein cose respired/ onverted to giv	/increases p to cell (surfa s / channels increase in r /cogen/glyc	ermeability to ce) membrar / carriers espiration ra ogenesis :	o glucose ; ne ; A in sarco te ;	olemma	[max 3]

Pa	age 8	Mark Scheme	Syllabus	Paper
		Cambridge International AS/A Level – May/June 2016	9700	41
	(c)	 accept stimulates/stimulated, for activates/activated throughout (adrenaline) receptor shape change; G-proteins activated; A description of G protein releases (α) subunit adenylyl cyclase activated; A adenyl(ate) cyclase cyclic AMP made; (cAMP is) second messenger; activates/phosphorylates, kinase; <i>ref. to</i> enzyme cascade/cascade of reactions; glycogenolysis/hydrolysis of glycogen, stimulated/AW; A break down glycogen AVP: gluconeogenesis/ref. to glucose transport proteins 		
		A description/glucose from, amino acids/lipids		
		A GLUT(2) channels/carriers		[max 5]
				[Total: 11]
8	(a)	 A – dendrite(s); B – dendron/ (sensory) axon; C – cell body (of neurone) / soma/centron; D – axon (membrane); A terminal axon 		[4]
	(b)	myelin insulates (axon) ; action potentials/depolarisation, only at nodes (of Ranvier) ; local circuits set up between nodes ; I local circuits at nodes action potentials/impulses, 'jump' from node to node or saltatory condu	ction ;	[max 2]
	(c)	only, stimulus/depolarisation/receptor potential/potential difference, tha reaches <u>threshold</u> produces an action potential ; ora A -50mV for threshold A generator for receptor	at	
		<i>idea that</i> the action potential is the same size no matter how strong the s <i>ref. to</i> all-or-nothing (law) ; I all-and-nothing	stimulus ;	[max 2]
				[Total: 8]

Pa	age 9	9	Mark Scheme	Syllabus	Paper
	Ŭ		Cambridge International AS/A Level – May/June 2016	9700	41
					·
9	(a)	aco	cept proton/hydrogen ion/H ⁺ /H ion as equivalent throughout		
		1	reduced, NAD/FAD ; A NADH/NADH ₂ /NADH + H ⁺ for reduced NA	4D	
		2	passed to ETC ;		
		3	inner membrane/cristae;		
		4	hydrogen released (from reduced, NAD/FAD); R H ₂		
		5	split into electrons and protons; A released as electron and protor	1	
		6	electrons pass along, carriers/cytochromes ; A electrons pass alor proteins of. ETC / carrier chain	ng	
		7	energy released pumps protons into intermembrane space ;		
		8	proton gradient is set up; A concentration gradient of protons is cro	eated	
			A full description		
		9	protons diffuse, (back) through membrane/down gradient;		
			A protons diffuse into matrix		
		10	ATP synthase/stalked particles/protein channels;		
			A ATP synthetase R ATPase		
		11	(ATP produced from) ADP and (inorganic) phosphate ; A context for	or 'final'	
		12	idea of oxygen as final electron acceptor;		
		13	addition of proton (to oxygen) to form water/ (oxygen) reduced to v	vater;	[max 8]
	(b)	1	pyruvato formod by alycolycis		
	(D)	2	reduced NAD formed by alvcolveis :		
		3	nyruvate decarboxylated / AW ·		
		4	ethanal produced :		
		5	pyruvate decarboxylase :		
		6	ethanal is. hydrogen acceptor/reduced : A gains H or gains H ⁺ and	d e⁻	
		7	from/by, reduced NAD ;		
		8	ethanol formed;		
		9	ethan <u>o</u> l/alcohol, dehydrogenase ;		
		10	not reversible reaction ;		
		11	NAD, regenerated / can now accept hydrogen atoms;		
			A reduced NAD oxidised		
		12	so glycolysis can continue ;		[max 7]
					[Total: 15]

PMT	

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9700	41

10 (a) I ref. to nuclear envelope I names of stages

meiosis I

- 1 chromosomes, condense/thicken/spiralise;
- 2 homologous chromosomes pair/bivalents form;
- 3 crossing over/described;
- 4 chiasma(ta);
- 5 spindle fibres/microtubules, attach to/pull, centromeres/kinetochores ; *allow* once in mp5 or in meiosis II
- 6 bivalents line up on, equator/mid-line ; A pairs of homologous chromosomes
- 7 independent assortment (of homologous pairs) / described ; A random assortment
- 8 chromosomes move to, two ends of cell/poles ; A (pairs of) homologous chromosomes separate

meiosis II

- 9 (individual) chromosomes/pairs of chromatids, line up on, equator/mid-line;
- 10 at right angles to first equator;
- 11 centromeres divide ;
- 12 chromatids separate ; A chromatids move to (opposite) poles
- 13 ref. to haploid/chromosome number halved/one set of chromosomes ; A n for haploid

[max 9]

(b) I polypeptide throughout

structural gene

- 1 structural protein/enzyme/rRNA; A any named protein other than a transcription factor (e.g. transporter/receptor/named hormone/ immunoglobulin/haemoglobin/etc.) R if any of these are identified as product of regulatory gene
- 2 named, structural protein/other protein/enzyme, **or** tRNA ; **R** named protein if function wrongly described
- 3 *idea that* needed for, structure/function, of cell;

regulatory gene

- 4 (product) controls, gene expression/transcription ; A promote/prevent/ start/stop, gene expression or transcription
- 5 (codes for) transcription factor/DNA-binding protein;
- 6 binds to, promoter/operator/DNA response element;
- 7 stops/allows, binding of <u>RNA polymerase</u>;
- 8 ref. to repressor/repressible ; A silencer
- 9 ref. to inducer/inducible ; A activator/enhancer
- 10 named example of regulatory gene ; A lac repressor/DELLA repressor/ homeobox or homeotic or *Hox* gene

[max 6]

[Total: 15]